存在全部实数属于(0,π/2),x>sinx是真命题吗?
人气:445 ℃ 时间:2020-03-21 15:18:23
解答
是啊
f(x)=x-sinx
f'(x)=1-cosx>0
所以f(x)递增
f(0)=0
所以x>0时f(x)>f(0)=0
即x>0就有x>sinx
推荐
- 存在实数x,使sinx+cosx=3/2真命题?
- 存在实数属于R,使sinx+cosx=2分之π成立 这个是真命题吗
- 对于命题P:对于任意实数x,有-1≤sinx≤1,q:存在一个实数使sinx+根号3cosx=π成立,
- 已知命题p:存在x∈R,有sinx+cosx=2;命题q:任意x∈(0,二分之π)有x>sinx,则下列命题是真命题的是
- 命题:存在实数X,使sinX—cosX=根号3,这个命题对吗?这个X应该怎么求呢?
- glass of whisky什么意思其中whisky
- 为什么细胞体积越小越有利于与外界进行物质交换
- 一个两层书架,上层放的书比下层放的3倍还多18本,如果把上层的书拿出101本放到下层,那么两层放的书本数
猜你喜欢