已知三维向量空间R^3的一个基:a1,a2,a3;设b1=2a1+3a2+3a3
(接上)b2=2a1+a2+2a3 b3=a1+5a2+3a3
证明b1,b2,b3也是R^3的一个基
求由基b1,b2,b3到基a1,a2,a3的过渡矩阵
人气:148 ℃ 时间:2020-05-19 01:00:36
解答
由已知,(b1,b2,b3)=(a1,a2,a3)KK = 2 2 13 1 53 2 3因为 |K|=1≠0,所以K可逆.所以 r(b1,b2,b3)=r[(a1,a2,a3)K]=r(a1,a2,a3)=3所以 b1,b2,b3也是R^3的一个基.基b1,b2,b3到基a1,a2,a3的过渡矩阵即 K^-1 =-7 -4 9 6 3 -...
推荐
- a1,a2,a3为向量空间的一组基,则a1,a2,a3到a1+a2,a2+2a3,2a1+a3的过渡矩阵p=?
- 已知向量组a1,a2,a3线性无关,判断2a1+3a2,a2-3a3,a1+a2+a3的线性相关性
- 【速求解】设a1,a2,a3是三维向量空间R3的基,b1=2a1+3a2+33,b2=2a1+a2+2a3,b3=a1+5a2+3a3
- 设A=(a1,a2.a3)其中a1,a2.a3为三维向量,如果|A|= -1,则|a1,2a1+3a2+a3,-3a3|=?
- 设矩阵A按列分块为A=[a1,a2,a3],其中a1,a2线性无关,且2a1-a2+a3=0,向量β=a1+2a2+3a3≠0
- 求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
- 1.一辆越野车在沙漠中行驶32.5千米耗油5.2升.它要跨越的无人区总路程为1303千米,至少要准备多少升汽油?(得数保留整数)
- 住院时我很难过,怎么翻译?
猜你喜欢