设椭圆[(x^2)/12]+[(y^2)/8]=1的长轴的端点分别为A1、A2,
点P为椭圆上异于A1,A2的一点,则直线PA1,PA2的斜率之积为
人气:192 ℃ 时间:2020-03-28 05:50:38
解答
P坐标(P,Q)
A1的坐标为(-a,0),A2的坐标为(a,0),直线PA1的斜率为Q-0/P+a,直线PA2的斜率为Q-0/P-a,两者相乘可得Q^2/(P^2-a^2),因为P点在椭圆上,所以P点的坐标满足椭圆方程,即P^2/a^2+Q^2/b^2=1,解得Q^2=b^2(a^2-p^2)/a^2.将Q^2代入前面两斜率相乘得到的Q^2/(P^2-a^2)式中,化简约去(P^2-a^2),即可得到 直线PA1与 PA2的斜率乘积=-(b^2/a^2)
推荐
- 设A1、A2是椭圆 x^2/9+y^2/4=1的长轴两个端点.
- 椭圆C:x^2/a^2+y^2/b^2=1 (a>b>0),A1,A2为椭圆C的左右顶点.
- 设A1,A2是椭圆的x平方/9+y的平方/5=1长轴上的左、右端点,动点M到A1的距离是M到A2距离的两倍,求点M的轨迹方程
- 已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0),A1,A2为椭圆的左右顶点. 设F1为椭圆的做焦点,
- 椭圆X^2/a^2+Y^2/b^2=1,A1,A2为长轴顶点,M为异于A1,A2的任意一点KMA1乘KMA2=?
- 关于以下三个英语短语的区别的问题
- 如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D、E两点(D、E不与B、A重合). (1)
- lim(x→0)[ cosx-1 /(sin² x)] 等于多少?
猜你喜欢