直线y-ax-1=0和双曲线3x²-y²=1相交于A、B两点.(1)当a为何值时,以AB为直径的圆过原点.(2)是否存在这样的实数a,使得两交点A、B关于y=x对称.若存在,求出a;若不存在,说明理由.
人气:243 ℃ 时间:2019-08-21 09:57:11
解答
y=ax+1代入双曲线,得:
3x²-(ax+1)²=1
(3-a²)x²-2ax-2=0
则:
x1+x2=(2a)/(3-a²)、x1x2=2/(a²-3)
因以AB为直径的圆过原点,则:
OA垂直OB【这里是向量】,因OA=(x1,y1)、OB=(x2,y2),则:
x1x2+y1y2=0
x1x2+(ax1+1)(ax2+1)=0
(1+a²)(x1x2)+a(x1+x2)+1=0
代入,化简,得:
a=±1
回答 由于A、B关于直线y=x对称,则:a=-1
此时直线是:x+y-1=0
代入双曲线,得:
2x²+2x-2=0
即:
x²+x-1=0
解这个方程研究下就可以了【存在】。。。咳咳,这一步还是不明白,可以再稍加解释一下么x²+x-1=0解这个方程研究下就可以了【存在】解这个方程就得到A、B的坐标了。。。。。貌似不会一元二次方程。。。。最多求根公式。。。。。好吧,原来我绕死胡同里去了,难怪怎么算都算不出,少看了个条件。。。那就好了。。
推荐
- 直线y-ax-1=0和双曲线3x²-y²=1相交于A、B两点.(1)当a为何值时,以AB为直径的圆过原点.(2)是否存在这样的实数a,使得两交点A、B关于y=x对称.若存在,求出a;若不存在,说明理由.
- 直线l:y=mx+1,双曲线C:3x2-y2=1,问是否存在m的值,使l与C相交于A,B两点,且以AB为直径的圆过原点.
- 10.设直线y=ax+b与双曲线3x*2-y*2=1交于A,B,以AB为直径的圆过原点,求点P(a,b)的轨
- 直线y=ax+1和双曲线3x^2-y^2=1相交于A,B两点,问a为何值时,以AB为直径的圆过坐标原点?
- 已知直线y=ax+1与双曲线3x*x-y*相交语AB两点,当a为何值时,以AB为直径的圆过原点
- 某种期刊按原价的70%批发给书摊,摊主按原定价降价1O%卖给读者.某读者用5.40元买了一本,摊主从中盈利多少元?
- It is important to treat others fairly and with respect,just as you would want to be treated
- 关于X、Y的方程组 2X+3Y=4K 3X+2Y=K的解也满足二分之X-三分之Y=1
猜你喜欢