已知F1,F2是双曲线x^2/9-y^2/16=1的两焦点,点M在双曲线上,如果向量MF1⊥向量MF2,求△MF2F1的面积?
人气:222 ℃ 时间:2019-08-18 10:46:01
解答
答案:16
解;设点M(x,y)
由题得:[y/(x+5)]* [y/(x-5)]=-1
所以 x^2+y^2=25
又 x^2/9-y^2/16=1
解之,y^2=256/25
所以,y的绝对值=16/5
所以△MF2F1的面积=10*(16/5)/2=16
推荐
- 已知F1,F2是双曲线xx/9-yy/16=1的两个焦点,点M在双曲线上.如果向量MF1垂直向量MF2,求三角形MF1F2的面积
- 已知双曲线X方—Y方/2=1的焦点为F1 F2,点M在双曲线上且向量MF1乘向量MF2=0,则点M到X轴的距离为
- 双曲线x^2/4-y^2=1的两个焦点为F1,F2,点M在双曲线上,△F1MF2的面积为根号3,则向量MF1*向量MF2等于?
- 已知双曲线两焦点是F1(-√10,0)F2(√10,0)M是双曲线上的点,且向量MF1*x向量MF2=0,|MF1|*|MF2|=2求方
- 已知双曲线x^2-(y^2)/2=1的焦点为F1、F2,点M在双曲线上且向量MF1点乘向量MF2=0
- 如果答出来,我感谢你八辈祖宗
- 快速记忆历史有什么方法
- 关于爰心的四字词语或成语.
猜你喜欢