已知函数f(x)=x/(3x+1),数列{an}满足a1=1,an+1=fan)(n∈N*),若数列{bn}的前n项和Sn=2^n-1,记Tn=b1/a1+b2/a2+.+bn/an,求Tn
人气:432 ℃ 时间:2019-08-22 16:55:05
解答
an+1 = an / (3an + 1)1/an+1 = 3 + 1/an令cn = 1/an则cn+1 = 3 + cnc1 = 1/a1 = 1故cn = 3n-2an = 1/(3n-2)Sn = 2^n - 1Sn-1 = 2^(n-1) - 1bn = Sn - Sn-1 = 2^n - 2^(n-1) = 2^(n-1)Tn = 1/1 + ...+ 2^(n-1)*(3n-2...
推荐
- 已知函数f(x)=3x/2x+3,数列{an}满足a1=1,an+1=f(an),n∈N*
- 已知函数f(x)=x/(3x+1),数列{an}满足a1=1,an+1=f(an)(n∈N*),求证:数列{1/an}是等差数列
- 已知函数f(x)=x/(3X+1),数列an满足a1=1,a(n+1)=f(an)(n为正整数)(1)求数列an的通项公式
- 已知函数f(x)=(2x+3)/3x,数列{an}满足a1=1,an+1=f(1/an),n∈N*.
- 设函数f(x)=(2x+3)/3x(x> 0),数列{an}满足a1=1,an=f(1/an-1a)(n∈n*,
- Steve:Anna,I'm g___ you could celebrate this Christmas with my family.
- I don't think he is right,反义疑问句该怎么回答
- 将 球 ,六棱柱 ,圆锥 ,正方体,三棱柱,圆柱,四棱锥,长方体分类
猜你喜欢