线性代数,已知A是2n+1阶矩阵正交矩阵,即AA^T=A^TA=E,证明E-A^2的行列式为零
书上有一步写着A(A^T-E^T)的行列式=A的行列式乘以A-E的行列式,为什么?
人气:156 ℃ 时间:2019-08-22 15:29:04
解答
|A(A^T-E^T)|
= |A||A^T-E^T|
=|A||(A-E)^T|
=|A||A-E|
注:知识点 |A^T|=|A|.
推荐
猜你喜欢
- 最快的速度成语
- 智者千虑必有一失是什么意思
- 不容易传热的物体叫做什么,如( ))等物体
- 27^1-log(9)(4)=多少,需要分析
- 圆形,直径1.5m,5m.等于几立方?求公式
- 已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,-sinx/2),c=(√3,-1),其中x属于R 当向量a垂直向量b,求x值集合
- 已知6-2x的平方根+y+64的绝对值=0,求(x+y)的2012次方的值
- 为什么北半球看北极星的仰角等于观测点的纬度?