设f(x)是定义在R上的偶函数且其图象关于直线x=1对称,对任意x1,x2属于(0到0.5) 都有f(x1+x2)=f(x1)*f(x2)
(1)求f(1/2)及f(1/4)
(2) 证明:f(x)是周期函数
(3)an=f(2n+1/2n),求an的表达式
人气:178 ℃ 时间:2019-08-21 02:26:17
解答
(1) 设0≤a≤1/2 f(x)=f(x/2+x/2)=f(x/2) 的平方≥0 又因为f(1)=f(1/2+1/2)=f(1/2)的平方 因为f(1/2) >0 所以f(1/2)=a的1/2次 F(1/2)=f(1/4+1/4) =f(1/4)的平方 因为f(1/4) >0 所以f(1/4)=a的1/4次
(2) 因为f(x)图像关于直线x=1对称 所以有f(x)=f(2-x) 又f(x)为偶函数 所以f(2-x)=f(x-2) 所以 f(x)=f(x-2) 即 f(x+2)=f(x) 所以 f(x)是以2为周期的周期函数.
(3) f(2n+1/2n)=f(1/2n)=a的1/2n次
推荐
- 设f(x)是定义在R上的偶函数,其图像关于x=1对称,对任意x1,x2∈[0,1/2],都有f(x1+x2)=f(x1)*f(x2).
- 设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1,x2∈[0,1/2],都有f(x1+x2)=f(x1)•f(x2),且f(1)=a>0. (1)求f(1/2)及f(1/4); (2)证明f(x)是周期函数.
- 设f(x)是定义域在R上的偶函数,其图象关于直线X=1对称,对任意X1,X2属于[0,1\2],都有f(x1+x2)=f(x1)f(x2)
- 设y=f(x)为定义域是R上的偶函数,其图像关于直线X=1对称,对任意X1,X2∈[0,1/2] ,都有f(x1+x2)=
- 设y=f(x)为定义域是R上的偶函数,其图像关于直线X=1对称,对任意X1,X2∈[0,1/2]
- How are you going to shool tomorrow?翻译
- 欲除去铝壶底的水垢,所加的试剂为浓盐酸,
- 王老师计划把2万元钱存入银行,定期2年,年利率4.68%,到期后他可获得多少元?(要缴纳5%的利息税)
猜你喜欢