定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)为偶函数
人气:420 ℃ 时间:2019-09-29 07:59:13
解答
令y=0
则有f(x)+f(x)=2f(x)f(0)
f(0)不等于0
得到f(0)=1
再令x=0
则有f(y)+f(-y)=2f(0)f(y)
得f(y)=f(-y)
所以f(x)为偶函数
推荐
- f(x)定义域为R,对任意x,y属于R有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0求证:f(0)=1 y=f(x)为偶函数
- 已知f(x)是定义在R上的函数,对于任意x,y属于R都有f(x+y)+(x-y)=2f(x)f(y),且f(o)不等于0
- 定义在R上的函数f(x),对任意的x.y属于R都有f(x+y)+f(x-y)=2f(x)f(y)且f(x)不等于0.求证f(0)=1
- 定义在实数集上的函数f(x),对任意x,y属于R.有f(x+y)+f(x-y)=2f(x)*f(y),且f(0)不等于0,
- 已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0)≠0,试证明f(x)是偶函数.
- 长江,黄河为什么向东流入大海?
- start for,start out for,start off for,set out for,set off for意思一样吗?
- 定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上递增,则...f(3)
猜你喜欢