如果复数a+bi满足实系数方程……
如果复数a+bi满足实系数方程a0+a1*Z+a2*Z^2+…+an*Z^n=0,证明它的共轭复数也满足方程
人气:143 ℃ 时间:2020-02-05 23:56:10
解答
由复数共轭的性质:z1*z2的共轭=z1的共轭*z2的共轭
推荐
- 复数Z=a+bi是方程Z
- 设复数z=a+bi(a>0,b≠0)是实系数方程x^2+px+q=0的根,又z^3为实数,则点(p,q)的轨迹
- 已知复数Z=a+bi是方程X2-4X+5=0的根.
- 证明实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则 =a-bi也是一个根.
- 已知复数z=a+bi(a、b∈R+)(I是虚数单位)是方程x2-4x+5=0的根.复数w=u+3i(u∈R)满足|w−z|<25,求u的取值范围.
- 大海对鱼游正如天空对() 勇士对( ) 正如懦夫对失败懒惰对贫困正如()对富裕()对大道正如崎岖对山路
- 已知函数f(x)=lnx/x,试求f(x)在[a,2a](a>0)上的最小值
- A为3阶方阵,|A|=-2,A*是A伴随矩阵,则|4A-1+A*|为多少
猜你喜欢