两个边长都为1的正方形ABCD,ABEF所在平面相交于直线AB,M∈AC,N∈BF,并且AM=FN=x.(1).求证:直线MN‖平面BCE.(2).若∠DAF=90°,求MN的最小值.
人气:416 ℃ 时间:2019-08-17 15:33:53
解答
过M做直线PM平行于BC交AB于P,CD于Q
那么只要得到NP平行AF即可.
利用三角形相似计算..
因为BP=CQ,BN=CM
因为边长都为1的正方形ABCD,ABEF,且CQ/CD=CM/CA
所以BP/BA=BN/BF
得到三角形BNQ相似三角形BAF
所以NP平行于AF
因为两平面有相交直线互相平行所以两平面平行.
因为两平面垂直
所以MN^2=MP^2+NP^2
又因为MP+PN=1
所以当MP=NP时去得最值
是√2/2
推荐
- 已知正方形ABCD和正方形ABEF所在的平面相交与AB,点M.N分别在AC和BF上,且AM=FN.求证:MN平行于平面BCE.
- 如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN∥平面BCE.
- 已知正方形ABCD和正方形ABEF所在的平面相交与AB,点M.N分别在AC和BF上,且AM=FN.求证:平面MPN平行于平面BCE
- 如图,正方形ABCD,ABEF的边长都是1,且平面ABCD与平面ABEF互相垂直,点M在AC上移动,点N在BF上移动.若CM=BN=a(0<a<根号2),建立空间直角坐标系,
- 如图,设ABCD和ABEF均为平行四边形,它们不在同一平面内,M,N分别为对角线AC,BF上的点,且AM:FN=AC:BF
- 郑板桥世称三绝的是什么
- 双曲线的焦半径公式是什么?
- Δεν ήμουν πλέον πριν από το Ι
猜你喜欢