(1) y=-x^2+(k^2-4)x+(2k-2)
以y轴为对称轴,故 k^2-4=0,即k=2或-2.
与y轴交点在x轴上方,所以2k-2>0,故应选k=2
得 y=-x^2+2.
(2)设动点A的坐标为(x,y),满足 y=x^2+2
AD=2x,AB=y,ABCD的周长 L = 2(2x+y) = 2(2x-x^2+2).
(3) ABCD成正方形的充要条件是 AD=AB,即2x=y=-x^2+2
整理得x^2+2x-2=(x+1)^2-3.令其等於0,解得 x=sqrt(3)-1 或 -1-sqrt(3)(小于0,舍去)
故能成为正方形.周长为 8(sqrt(3)-1)