椭圆中心为原点,焦点在 x轴上 其上有两条斜率互为相反数的弦AB和CD 求证:A,B,C,D公园
椭圆中心为原点,焦点在 x轴上 其上有两条斜率互为相反数的弦AB和CD
求证:A,B,C,D公园
是求证:A,B,C,D四点共圆
人气:239 ℃ 时间:2019-10-19 21:30:16
解答
设椭圆方程为x²/a²+y²/b²=1 (a>b>0) (1)
由直线AB和直线CD的斜率互为相反数,
可设直线AB的方程为kx-y+m=0 (2)
直线CD的方程为kx+y+n=0.(3)
则过直线AB和直线CD与椭圆x²/a²+y²/b²=1的四个交点A、B、C、D的曲线系方程为
(也可理解为同时满足方程(1)(2)(3)的点的集合)
(kx-y+m)(kx+y+n)+λ(b²x²+a²y²-a²b²)=0,
化简得 (λb²+k²)x²+(λa²-1)y²+(kn+km)x+(m-n)y+mn-λa²b²=0 .(4)
令λb²+k²=λa²-1,得λ=(k²+1)/(a²-b²)
此时λb²+k²=λa²-1=(a²k²+b²)/(a²-b²)≠0,
即存在λ=(k²+1)/(a²-b²),
使(4)方程为圆的方程,
所以A、B、C、D四点共圆.
推荐
- 如图,椭圆的中心在原点,焦点在X轴上,过右焦点F作斜率为1的直线交椭圆于A,B.若椭圆是存在点C,是%C
- 【椭圆直线】椭圆的中心在原点,焦点在X轴上,过右焦点F作斜率为1的直线交椭圆于A,B.若椭圆是存在点C,是%...
- 过椭圆x2/5+y2/4=1的左焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点求弦AB的长
- 椭圆的中心在原点,右焦点为(1,0),过右焦点的弦AB的斜率为1,若以AB为直径的圆经过椭圆的左焦点.求椭圆方程.
- 已知椭圆的中心在原点O,焦点在x轴上,过其右焦点F做斜率为1的直线l,交椭圆于A、B两点,若椭圆上存在一点
- 比x的五倍多十的数是八十x是多少
- 如果有理数ab满足(a-1)的平方+|b+1|=0 求a的201次方 + b的200次方
- 力的分解和合成
猜你喜欢