定义在R上的奇函数f(x)有最小正周期2,且X属于(0,1)时,f(x)=2^x/4^x+1,
1.求f(x)在[-1,1]上的解析式
2.证明f(x)在(0,1)上是减函数
3.当M取何实数时,方程f(x)=M在[-1,1]上有解
人气:119 ℃ 时间:2019-08-20 15:41:16
解答
1
f(x)=2^x/4^x+1 0,1
0 x=0
-2^(-x)/(4^-x+1)
2
把2^x除下来
分母是2^x+2^-x
在x>0时是递增的且是正的
所以原函数递减
3
就是求值域
(-1,-0.4),0,(0.4,1)
不明白在线问
推荐
- 已知定义在R上的奇函数f(x)有最小正周期2,当x属于(0,1)时,f(x)=2^x/(4^x+1)
- 已知定义在R上的奇函数f(x)有最小正周期2,当x属于(0,1)时,f(x)=2^x/(4^x+1),求f(x)在[-1,1]上的解析式.
- 定义在R的奇函数f(x)有最小正周期2,当0
- 定义在R上的函数f(x)是最小正周期为2的奇函数,且当x∈(0,1)时,f(x)=2^x/(4^x+1)
- 定义在R上的奇函数有最小正周期A,且X属于(0,1)时,F(X)=2的X次/{(4的X次)+1}
- 空气压力是水的几倍
- 这句英语对吗With the tremendous success of the opening ceremony of the Beijing Olympic Games,
- 英语翻译:在那一时期,中国没有电视(用time;when)
猜你喜欢