设二次函数f(x)=ax^2+bx+c(a不为0)中a,b,c均为整数,且f(0),f(1)均为奇数,用反证法证明方程f(X)=0无整数根
人气:196 ℃ 时间:2020-04-14 20:33:56
解答
假设f(x)=0有实数根,并设其为x1
由已知:
f(0)=c为奇数
f(1)=a+b+c为奇数
所以a+b为偶数
a、b为两奇数或者两偶数
当a、b为两偶数时,ax1^2+bx1为偶数,显然不等于-c,即ax^2+bx+c≠0
当a、b为两奇数且x1不为偶数时,ax1^2为奇数,bx1也为奇数,ax1^2+bx1为偶数,也不等于-c,即ax^2+bx+c≠0
当a、b为两奇数且x1为偶数时,ax1^2+bx1为偶数,显然不等于-c,即ax^2+bx+c≠0
综上所述,当f(x)=0有实数根成立时,与所设条件矛盾,故f(x)=0无实数根
推荐
- 设函数f(x)=ax2+bx+c (a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.
- 设函数f(x)=ax2+bx+c (a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.
- 设二次函数y=ax∧2+bx+c中的a,b,c为整数,且f(0),f(1)均为奇数,求证,方程f(x)无整数根
- 设函数f(x)=ax2+bx+c (a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.
- 二次函数ax^2+bx+c(a,b,c均为奇数)证明:此方程无整数解
- 一个数的3倍比4与6的积多48,这个数是多少?
- 纸箱里有红、绿、黄三种颜色的求,其中红球的个数是绿球的3/4,绿球与黄球个数的的比是4;5.已知绿球
- 科技有限公司 英文翻译成 Technology Co.,Ltd.还是Technologies Co.,Ltd.
猜你喜欢