已知动点M到定点F1(-4,0),F2(4,0)的距离之和为不小于8的常数,则动点M的轨迹是
如题,速解.
人气:157 ℃ 时间:2019-08-21 16:19:47
解答
椭圆或线段
推荐
- :动点P到两定点F1(-4,0),F2(4,0)的距离的和是8,则动点P的轨迹方程
- 已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为4√2⑴求动点M轨迹C的方程⑵设N(0,2),过点p(-1,-2)做直线L交椭圆C异于N的A,B两点,直线NANB的斜率为K1,K2证明:K1+K2为定值
- 平面内一动点M到两定点F1、F2的距离之和为常数2a,则点M的轨迹为( ) A椭圆 B圆 C无轨迹
- 已知动点M与两定点F1(-a,0)F2(a,0)(a大于0,为常数)的连线的斜率之积为常数k,若点M的轨迹是离心率为根
- RT、.设有2个定点 F1(-4.0) F2(4.0)动点M到F1和F2的距离之比为1:3 求动点M的轨迹方程
- 司空见惯意思:
- 设i,j分别是平面直角坐标系内x轴,y轴的正方向上的单位向量,
- 用列举法表示下列各集合:(2){x|x=4k-1,-2<k<2,k∈Z}
猜你喜欢