已知函数f(x)=1/3x^3+bx^2+cx且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)上单调递减
当x属于[-1,3]是,函数f(x)的切线的斜率的最小值是-1,求b,c的值
c都是实数。
请在今天上午内解答,我会酌情加分
人气:399 ℃ 时间:2019-08-26 06:41:33
解答
f'(x)=x^2+2bx+c 在区间(-1,1)上单调递增,在区间(1,3)上单调递减
f'(1)=0 c=-2b-1 f'(x)=x^2+2bx-2b-1 当x属于[-1,3]是,函数f(x)的切线的斜率的最小值是-1 即f'(x)在[-1,3]最小值为-1 根的分布讨论
-b<-1,b>1,f'(-1)=-1,b=-1/4舍
-b>3,b<-3,f'(-3)=-1,b=9/8舍
-1≤-b≤3,-3≤b≤1,-b^2-2b-1=-1,b=0或-2
b=0,c=-1或b=-2,c=3
推荐
- 已知函数f(x)=1/3x^3+bx^2+cx,且函数f(x)在区间(-1,1)上单调递增在区间(1,3 )单调递减
- 已知函数f(x)=1/3x^3+bx^2+cx(b,c∈R)且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)单调递减.
- 已知f(x)=1/3X^3+bx^2+cx+d在区间(-1,3)上是减函数,在区间(负无穷,-1),(3,正无穷)上是增函数
- 已知函数f(x)=-1/3x^3+bx^2+cx+bc,其导函数为f'(x).令g(x)=|f'(x)|,记函数g(x)在区间[-1,1]的最大值为M.
- 若函数f(x)=x^3+bx^2+cx+d的单调递减区间为(-1,2),求b,c的值
- 整数和小数的四则运算的计算方法: 整数 小数 加法和减法 乘法 除法
- 要求:1、整体思想
- 8个小朋友分6张饼,应如何切,才能使切的次数最少,并且每个小朋友分得的同样多呢?
猜你喜欢