等比数列an中a1=4,前n项和Sn满足S3 S2 S4成等差数列,求an通项公式!
人气:345 ℃ 时间:2019-08-20 17:31:05
解答
a1*(1-q^3)/(1-q)+a1*(1-q^4)/(1-q)=2*a1*(1-q^2)/(1-q)
解得:q=0(舍去),q=1,q=-2
q=1时,an=4,
q=-2时,an=4*(-2)^(n-1)
推荐
- 等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列 (Ⅰ)求{an}的公比q; (Ⅱ)a1-a3=3,求Sn.
- 已知数列{an}是首项a1=1/4的等比数列,其前n项和Sn中S3,S4,S2成等差数列【注:S4是中间项】 求an
- 等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列 (Ⅰ)求{an}的公比q; (Ⅱ)a1-a3=3,求Sn.
- 已知数列{an}是首项a1=4的等比数列,Sn为其前n项和,且S3,S2,S4成等差数列.(1)求数列{an}的通项公式
- 已知数列{an}是首项a1=1/4的等比数列,其前n项和Sn中S3,S4,S2成等差数列
- The teacher made the students clean the classroom after school.(改为被动语态)
- 超市的饼干卖5分之一后进了180包这时饼干包数与原来的比是5比4原来有多少包?
- 6(1)班平均分是97分,6(2)班平均分95分,两班平均分是96、04分,6(1)与6(2)班人数比是多少?
猜你喜欢