ax+b |
1+x2 |
∴f(0)=0,即b=0
又∵f(
1 |
2 |
2 |
5 |
| ||
1+
|
2 |
5 |
∴f(x)=
x |
1+x2 |
(2)任取任取两个数x1,x2∈(-1,1),且x1<x2,
则f(x1)-f(x2)=
x1 |
1+x12 |
x2 |
1+x22 |
(x1−x2)(1−x1•x2) |
(1+x12)(1+x22) |
因为x1,x2∈(-1,1),且x1<x2,
∴x1-x2<0,1+x12>0,1+x22>0,1-x1•x2>0
则f(x1)<f(x2)
故函数f(x)=
ax+b |
1+x2 |
ax+b |
1+x2 |
1 |
2 |
2 |
5 |
ax+b |
1+x2 |
1 |
2 |
2 |
5 |
| ||
1+
|
2 |
5 |
x |
1+x2 |
x1 |
1+x12 |
x2 |
1+x22 |
(x1−x2)(1−x1•x2) |
(1+x12)(1+x22) |
ax+b |
1+x2 |