| ax+b |
| 1+x2 |
∴f(0)=0,即b=0
又∵f(
| 1 |
| 2 |
| 2 |
| 5 |
| ||
1+
|
| 2 |
| 5 |
∴f(x)=
| x |
| 1+x2 |
(2)任取任取两个数x1,x2∈(-1,1),且x1<x2,
则f(x1)-f(x2)=
| x1 |
| 1+x12 |
| x2 |
| 1+x22 |
| (x1−x2)(1−x1•x2) |
| (1+x12)(1+x22) |
因为x1,x2∈(-1,1),且x1<x2,
∴x1-x2<0,1+x12>0,1+x22>0,1-x1•x2>0
则f(x1)<f(x2)
故函数f(x)=
| ax+b |
| 1+x2 |
| ax+b |
| 1+x2 |
| 1 |
| 2 |
| 2 |
| 5 |
| ax+b |
| 1+x2 |
| 1 |
| 2 |
| 2 |
| 5 |
| ||
1+
|
| 2 |
| 5 |
| x |
| 1+x2 |
| x1 |
| 1+x12 |
| x2 |
| 1+x22 |
| (x1−x2)(1−x1•x2) |
| (1+x12)(1+x22) |
| ax+b |
| 1+x2 |