数列极限:设{an}为数列,a为定数.若对任给的正数E,总存在正整数N,使得当n>N时有/an-a/
人气:254 ℃ 时间:2020-06-02 04:10:31
解答
正整数N为数列{an}的序号;
任给的正数E应理解为随便一个正小数,比如0.000 0001;
若对任给的正数E,总存在正整数N,使得当n>N时有/an-a/
推荐
- 数列极限:设{an}为数列,a为定数.若对任给的正数E,总存在正整数N,使得当n>N时有/an-a/N这一说法呢.
- 数列{an}满足a1=1,an+1=(n-λ)/(n+1)an若存在正整数m当n>m时有an
- 设a1>0,an+1=1/2(an+1/an)(n=1,2……)问数列{an}的极限是否存在,若存在,求liman
- 是否存在数列{An},对任意正整数n,An取0或1,同时使n趋于无穷大时,极限(ΣAn)/n不存在?若存在构造之
- 在数列{An}中,已知An=(n+1)*(10/11)^n是否存在正整数k,使{An}中,对任意的正整数n,都有Ak>=An成立?
- 旅游中如何保护环境英语作文
- 以环保为主题,可以举办什么比较有创意的活动?
- 初一下册生物小李患了糖尿病他应在饮食中尽量减少膳食宝塔什么食物?
猜你喜欢