中心在原点的椭圆与双曲线2X^2-—2Y^2=1有公共焦点,且离心率互为倒数,求椭圆的标准方程.
人气:148 ℃ 时间:2019-08-30 13:58:03
解答
x²/(1/2)-y²/(1/2)=1
所以a²=b²=1/2
c²=1
e=c/a=√2
椭圆c'=1
e'=1/e=c'/a'=√2/2
所以a'=√2
b'²=a'²-c'²=1
所以x²/2+y²=1
推荐
- 设中心在原点的椭圆与双曲线2x2-2y2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是_
- 设中心在原点的椭圆与双曲线2x^2-2y^2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是多少.
- 设中心在原点的椭圆与双曲线2x2-2y2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是_
- 设中心在原点的双曲线与椭圆x22+y2=1有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是_.
- 设中心在原点的双曲线与双曲线2x^2-2y^2=1有公共的焦点,且它们的离心率之和为2+根号2,求该双曲线的方程
- 24.(14分)如图所示,在倾角θ=37的固定斜面上放置一质量M=1kg、长度L=3m的薄平板AB.平板的上表面光滑
- 若y与x成一次函数关系,且当x=2时,y=1;x=3时,y=2,则y与x的关系为
- 要求:直接写答案就行,÷这个是除号 ×这个是乘号 +-号 分号/
猜你喜欢