证明 1+1/2+1/3+...+1/n>ln(n+1)+n/2(n+1) n≥1
我们学到导数定积分 请回答者不要用高等代数
人气:210 ℃ 时间:2019-09-24 06:13:58
解答
构造函数法证明.注意到ln(n+1)=ln[(n+1)/n]+ln[n/(n-1)]+...+ln(3/2)+ln(2/1),而n/(n+1)=1-1/(n+1)=(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)].于是我们根据要证明的表达式,两边取通项(x-->1/n)构造函数f(x)=x-ln(1+x)-(1...
推荐
猜你喜欢
- 《散步》文中哪些地方体现“我”责任重大?为什么说我和妻子背上的加起来,就是整个世界?
- 哪些食物含碳水化合物多
- Lucy wants to do more exercise.(改为否定句)
- 在一定温度下,将一定量的NaCl和纯碱分别加入100g水中,依据下列实验判断各种溶液的状态(饱和)和溶液的浓
- 两种不同材料制成的圆轴在外力偶矩的作用下扭转角相同吗?
- more,in,will,years,there,factories,be,100,(连词成句)
- He will set out at eight o'clock ,so we will have plenty of time.
- 打开心中的那把锁阅读答案