证明 1+1/2+1/3+...+1/n>ln(n+1)+n/2(n+1) n≥1
我们学到导数定积分 请回答者不要用高等代数
人气:497 ℃ 时间:2019-09-24 06:13:58
解答
构造函数法证明.注意到ln(n+1)=ln[(n+1)/n]+ln[n/(n-1)]+...+ln(3/2)+ln(2/1),而n/(n+1)=1-1/(n+1)=(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)].于是我们根据要证明的表达式,两边取通项(x-->1/n)构造函数f(x)=x-ln(1+x)-(1...
推荐
- 如何证明1 +1/2+1/3+……+1/n〉ln(n+1)
- 证明1+1/2+1/3+.+1/n>ln(n+1)+n/2(n+1) ,(n>=1),用数学归纳法点做啊
- 证明不等式:ln(x+1)≤1+1/2+1/3+.+1/n<1+lnn
- 证明1+1/2+1/3+...+1/nln(x+1),
- 证明ln(n+1)
- 0,1,4,15,56( )要此规括号应填什么数字
- [紧急求助]为什么能量流动过程中,有逐级递减的特点?是否可以这么理解,如果要想增重1kg,那么至少需...
- 谈到太平国洪、杨内讧这段历史,人们不禁会发出“ ”(曹植诗)的叹惋.
猜你喜欢