这里是令g(x)=(a^2-1)x^2+(a-1)x+2/(a+1)
则 f(x)=√g(x)
当a²-1>0时 确保g(x)=(a^2-1)x^2+(a-1)x+2/(a+1)表示一个开口向上的抛物线
△ ≤0 时,确保方程(a^2-1)x^2+(a-1)x+2/(a+1)=0有两个相等实数根或无实数根,
也表示函数g(x)=(a^2-1)x^2+(a-1)x+2/(a+1)的图像在x轴之上或与x轴相切,
也表示函数g(x)恒相对于或等于0
这样,也就确保了函数f(x)=√[(a^2-1)x^2+(a-1)x+2/(a+1)]的定义域为R
1≤a≤9