已知函数f(x)=x-alnx,g(x)=-(1+a)/x,若在[1,e]上存在一点x0,使得f(x0)
人气:364 ℃ 时间:2020-10-01 21:39:31
解答
f(x0)1+a
a(x0lnx0-1)>1+x0^2
a>(1+x0^2)/(x0lnx0-1)
x0在[1,e]
(1+x0^2)/(x0lnx0-1)为增函数
当x0=1,a>-2
当x0=e,a>(1+e^2)/(e-1)
所以a>(1+e^2)/(e-1)
推荐
- 已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是
- 已知函数f(x)=1/x+alnx(a≠0,a∈R)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范
- 设函数f(x)=x^3,g(x)=-x^2+x-2/9a,若存在x0∈[-1,a/3](a>0)使得f(x0)
- 已知函数f(x)=3mx-4,若在[-2,0]上存在x0,使f(x0)=0,则实数m的取值范围为___.
- 已知函数f(x)=3ax+1-2a在区间(-1,1)上存在x0,使得f(x0)=0,则a的取值范围?
- 在消费者均衡点以上的无差异曲线的斜率大于预算线的斜率吗?为什么?
- 西欧和日本的经济恢复和发展过程中共同的因素有哪些?
- 简述蛋白质分离的常用方法及其原理,
猜你喜欢
- 我希望可以具体点的.
- 有甲乙两桶油甲重40千克乙重35千克从甲桶到多少有在乙桶使乙桶油是甲桶的1.5倍
- 在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.试判断△PDQ的形状,并证明.
- he is a famous person in this r____ .(a large area or part)
- 李白的送别诗(至少2首)
- 已知,正三棱锥P-ABC中,侧棱PA=a,角APB=30度,D,E分别是侧棱PB,PC上的点,则三角形ADE的周长最小值为...
- 1、某商场衣服打八折后降了50元,这件衣服原价多少元?
- 标况下,7点5克某气体A和4克甲烷的体积相等,求A气体的密度;同温同压下,质量相等的锌镁铝分别与盐酸...