B+C |
2 |
π−A |
2 |
则cosA+2cos(
B+C |
2 |
=cosA+2sin(
A |
2 |
=1−2sin2
A |
2 |
A |
2 |
=−2(sin
A |
2 |
1 |
2 |
3 |
2 |
易得当sin
a |
2 |
1 |
2 |
π |
3 |
B+C |
2 |
故θ=
π |
3 |
(2)由(1)的结论
S=
1 |
2 |
| ||
4 |
又∵a=1,即A=
π |
3 |
| ||
4 |
故△ABC面积的最大值
| ||
4 |
B+C |
2 |
B+C |
2 |
B+C |
2 |
π−A |
2 |
B+C |
2 |
A |
2 |
A |
2 |
A |
2 |
A |
2 |
1 |
2 |
3 |
2 |
a |
2 |
1 |
2 |
π |
3 |
B+C |
2 |
π |
3 |
1 |
2 |
| ||
4 |
π |
3 |
| ||
4 |
| ||
4 |