设f(x)在0到正无穷大上可导,f(x)>0,limf(x)=1(x趋向正无穷大),若lim[f(x+nx)/f(x)]^(1/n)(n趋向于0)
=e^(1/x),求f(x)
人气:270 ℃ 时间:2020-04-03 14:29:52
解答
证:由lim[f(x+nx)/f(x)]^(1/n)=e^(1/x),(n趋向于0)
得e^[f(x+nx)-f(x)]/f(x)*(1/n)=e^(1/x),),(n趋向于0)
得lim[f(x+nx)-f(x)]/nf(x)=1/x 用罗比达法则:
limx*f'(x+nx)/f(x)=1/x(n趋向于0)又f(x)>0
得f'(x)/f(x)=1/x^2
f(x)=e^-(1/x)+c limf(x)=1(x趋向正无穷大)求得C=0
故f(x)=e^-(1/x)
推荐
猜你喜欢
- 春季是一年中的第一个季节,是一年的开始.这句话用法语怎么翻译,急用.
- 4分之一加3分之一的和乘于12等于?
- 强酸为什么可以制弱酸
- you are in trouble,ask the policeman for help(用if合并句子)
- 一块平行四边形的铁周长是82厘米,一条底边长16厘米,这条底边的高是20厘米
- 1.果品店批发店存放的苹果是香蕉的3倍,春节前夕,平均每天批发出250千克香蕉,600千克苹果,几天后,香蕉全部批发完,苹果剩750千克,果品店原存放的苹果和香蕉各多少千克?
- (3.2+0.128)/0.8 简算
- 中译英:那是他们第一次见面,理查德决心要给那个女孩子留下一点儿印象(be determined to do)