设f(x)=lim(n趋向于+无穷大){x*2*e^n*(x-1)+ax+b}/{e^n*(x-1)+1}问a,b何值时,f(x)在R上连续,可导?()
人气:193 ℃ 时间:2020-04-18 03:42:19
解答
a=2,b=-1
------
e^n*(x-1)的极限就是一个等比数列的极限,所以通过比较e^(x-1)与1的关系,求极限后可得f(x)=
x^2,x>1
ax+b,x<1
(a+b+1)/2,x=1
连续,则x=1处的左极限=右极限=f(1),得a+b=1
可导,则左导数=右导数,得a=2
推荐
- 设lim((x^2+1)/(x+1) -ax-b)=0,求a,b.x趋向无穷大
- 设f(x)=lim(n→∞)(x^(2)e^(n(x-1))+ax+b)/(e^(n(x-1))+1)确定a b 使f(x)处处可导.求f`(x)
- lim(x趋向于无穷大)x[(1+1/x)^x-e]
- 设f(x)在0到正无穷大上可导,f(x)>0,limf(x)=1(x趋向正无穷大),若lim[f(x+nx)/f(x)]^(1/n)(n趋向于0)
- 已知lim(x趋向无穷大)(根号下(x^2+x+1)-ax)存在 求a与该极限值
- 一道关于测滑轮组机械效率的实验探究题
- 有关地震的调查问卷题目(选择题的)
- 由于温度变化,水,空气,生物等外力的作用和影响,地表或近地造成的破坏,称为(
猜你喜欢