> 数学 >
设导数f(x)=根号(x^2+1)-ax,其中a≥1.证明:f(x)在区间[0,+∞)上是单调递减函数.
人气:224 ℃ 时间:2019-08-19 13:18:06
解答
题目中的函数是符合函数,所以求导的时候要注意复合函数的求导,内外都要 即得出F’(X)=2* 1/2 *(x^2+1) -1/2 –a 整理之后就是F’(X)=1/ √(x^2+1) -a 要知道√(x^2+1)>=1,所以1/ √(x^2+1)=1 所以导函数F’(X)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版