若任意三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c一定是某个整数(常数)n的倍数,n的最大值为
人气:331 ℃ 时间:2019-10-17 01:44:14
解答
分析:根据题义,我们取两组值进行观察分析:
(1) a=11 b=5 则c=22+25=47 a+b+c=63
(2) a=13 b=7 则c=26+35=61 a+b+c=81
∵(63,81)=9 ∴n最大可能值是9.
证明:∵2a+5b=c ∴a+b+c=a+b+2a+5b=3a+6b=3(a+2b) ∴3|a+b+c
设a、b被3除余数为ra、rb.由于a、b是质数,故ra、rb值必是1或2.所以存在以下两种情况:
(1) ra≠rb,则其中必有一个为1、另一个为2.
∵1+2=3 ∴ c=2a+5b=2(a+b)+3b ∴3|c
这与c是质数相矛盾,故这种情况不存在.
(2) ra=rb,则 3|a-b.∵a+2b=3b+(a-b) ∴3|a+2b ∴9| a+b+c
命题成立,即n=9.
推荐
- 已知定理“若大于3的三个质数a、b、c满足关系式2a+5b=c,则a+b+c是整数n的倍数”.试问:这个定理中的整数n的最大可能值是多少?请证明你的结论.
- 已知定理“若大于3的三个质数a、b、c满足关系式2a+5b=c,则a+b+c是整数n的倍数”.试问:这个定理中的整数n的最大可能值是多少?请证明你的结论.
- 三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是整数n的倍数,整数n的最大可能值是多少?并证明结论
- 已知定理“若大于3的三个质数a、b、c满足关系式2a+5b=c,则a+b+c是整数n的倍数”.试问:这个定理中的整数n的最大可能值是多少?请证明你的结论.
- 已知定理:“若三个大于3的质数,满足关系式2a+5b=c ,则a+b+c 是整数n的倍数”.试问:上述定理中的整数n的最
- 师异道,人异论,百家殊方,旨意不同...凡不在六艺之科,孔子之术者,皆绝其道,勿使并进...
- 怎样判断一条题目是证明还是求值?
- 已知,如图,在梯形ABCD中,AD//BC,EF是梯形的中位线(两腰中点的连线).求证:EF//AD,EF//BC,EF=0.5(AD+BC).
猜你喜欢