∴(an+1-an)=2(an-an-1)(n≥2)
∵a1=2,a2=4∴a2-a1=2≠0,∴an+1-an≠0
故数列{an+1-an}是公比为2的等比数列
∴an+1-an=(a2-a1)2n-1=2n
∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)++(a2-a1)+a1
=2n-1+2n-2+2n-3++21+2
=
| 2(1−2n−1) |
| 1−2 |
又a1=2满足上式,
∴an=2n(n∈N*)
(II)由(I)知bn=
| 2(an−1) |
| an |
| 1 |
| an |
| 1 |
| 2n |
| 1 |
| 2n−1 |
∴Sn=2n−(1+
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 2n−1 |
=2n−
1−
| ||
1−
|
=2n−2(1−
| 1 |
| 2n |
=2n−2+
| 1 |
| 2n−1 |
由Sn>2010得:2n−2+
| 1 |
| 2n−1 |
即n+
| 1 |
| 2n |
