已知M(4,0),N(1,0)若动点P满足向量MN向量MP=6丨NP丨
(1)求动点P的轨迹C的方程
(2)设Q是曲线C上任意一点,求Q到直线l;x+2y-12=0的距离的最小值
人气:209 ℃ 时间:2019-11-10 11:06:22
解答
(1)设 P(x,y),则 MN=(-3,0),MP=(x-4,y),NP=(x-1,y),
由 MN*MP=6|NP| 得 -3(x-4)=6√[(x-1)^2+y^2] ,
化简得 x^2/4+y^2/3=1 .
(2)设 Q(2cosa,√3sina),则 Q 到直线 L 的距离为
d=|2cosa+2√3sina-12|/√5=[12-4sin(a+π/6)]/√5 ,
因此最小值为 (12-4)/√5=8√5/5 .
推荐
- 已知M(4,0),N(1,0),若动点P满足向量MN×向量MP=6向量NP
- 已知M(4,0),N(1,0),若动点p满足MN向量*MP向量=6|NP向量|,求动点p的轨迹方程.
- 已知两点M(-1,0),N(1,0),点P使向量MP·MN,PM·NM,NM·NP成公差小于零的等差数列
- 已知M(4,0),N(1,0),若动点p满足MN向量*MP向量=6|NP向量|,1,求动点p的轨迹方程.2,
- 已知两点M(-1,0),N(1,0),点P为坐标平面内的动点,满足|MN|*|NP=向量MN*MP
- 如图,在△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E.已知AB=10,BC=8,AC=6,求△AED的周长
- 如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( ) A.右转80° B.左转80° C.右转100° D.左转100°
- 运用辨证唯物论知识说明,中国人的航天梦想能逐步实现的原因.
猜你喜欢