f(x)=a/x+xlnx>=1恒成立求a 的取值范围
人气:422 ℃ 时间:2020-02-06 03:44:58
解答
根据题意可知x∈(0,+∞)
a/x+xlnx≥1恒成立,x∈(0,+∞)
→a≥x-x²lnx,恒成立,x∈(0,+∞)
令g(x)=x-x²lnx,x∈(0,+∞)
则g ’(x)=1-2xlnx-x=1-(2xlnx+x)
因为y=2x,y=lnx,y=x均为增函数,
所以y=2xlnx+x为增函数,所以g ’(x)=1-(2xlnx+x)为减函数
所以g ’(x)=1-(2xlnx+x)与x轴只有一个交点.
令1-(2xlnx+x)=0,解得x=1
所以当x∈(0,1)时,g ‘(x)>0,g(x)单调递增;
当x∈(1,+∞)时,g ‘(x)<0,g(x)单调递减
所以当x=1时,g(x)最大值=g(1)=1,
所以g(x)≤1,即x-x²lnx≤1
又因为a≥x-x²lnx,恒成立,x∈(0,+∞)
所以a≥1,即a∈(1,+∞)
推荐
- 已知函数f(x)=xlnx,若f(x)>=ax-1对任意x>0恒成立,则a的取值范围
- 已知f(x)=xlnx,若f(x)>=-x^2+ax-6在(0,正无穷)上恒成立,求实数a的取值范围为
- 已知函数f(x)=e^x+ax,g(x)=e^xlnx.(2),若对于任意实属x≥0,f(x)>0恒成立,求a的取值范围.
- 若对所有的x∈[e,+∞)都有xlnx≥ax-a恒成立,则实数a的取值范围为?
- 已知函数f(x)=xlnx,若f(x)>=ax-1对任意x>0恒成立,则a的取值范围 A a=1
- 24.(14分)如图所示,在倾角θ=37的固定斜面上放置一质量M=1kg、长度L=3m的薄平板AB.平板的上表面光滑
- 若y与x成一次函数关系,且当x=2时,y=1;x=3时,y=2,则y与x的关系为
- 要求:直接写答案就行,÷这个是除号 ×这个是乘号 +-号 分号/
猜你喜欢