若x²+p1x+q1=0与x²+p2x+q2=0,求证:当p1p2=2(q1+q2)时,这两个方程中至少有一个方程有实根
人气:238 ℃ 时间:2019-11-24 23:15:25
解答
前一个方程根的判别式为:△1=p1^2-4q1后一个方程根的判别式为:△2=p2^2-4q2∴△1+△2=p1^2-4q1+p2^2-4q2=p1^2+p2^2-4q1-4q2=(p1-p2)^2+2(p1p2-2p1-2p2)当p1p2=2p1+2p2时,p1p2-2p1-2p2=0∴...
推荐
- 已知关于x的方程x^2+p1x+q1=0和x^2+p2x+q2=0,且p1p2=2(q1+q2),证明这两个方程中至少有一个方程有实数根
- 若p1p2=2(q1+q2),证明:关于x的方程x2+p1x+q1=0与方程x2+p2x+q2=0中,至少有一个方程有实数根.
- 若p1p2=2(q1+q2),证明:关于x的方程x2+p1x+q1=0与方程x2+p2x+q2=0中,至少有一个方程有实数根.
- 已知方程甲:x2+p1x+q1=0,方程乙:x2+p2x+q2=0,其中p1,p2,q1,q2均为实数,且满足p1p2=2(q1+q2)
- 已知关于x的方程x²+p1+q1=0与x²+p2+q2=0
- 2.37的立方根是1.333 23.7的立方根是2.872 那0.0237的立方根是多少?
- 城市化步伐的快速发展,使得生活节奏加快.生活水平的不断提高,家庭庭院也更多的出现在现代人的生活之中.庭院的设计五花八门,由于种种原因,往往缺乏合理的环境设计, 缺乏景观植物的种植设计,致使庭院环境不甚理想.如何改变这种尴尬局面,合理布置有限
- 英语翻译
猜你喜欢