用数学归纳法证明f(n)=1+1/2+1/4+...+1/2^n(n属于N)的过程中,从n=k到n=k+1时,f(k+1)比f(k)共增加了多少项
答案是2^K 为什么。
人气:120 ℃ 时间:2020-06-22 01:20:32
解答
f(k+1)=1+1/2+1/4+...+1/2^k+1/(2^k+1)+...+1/2^(k+1)
f(K)=1+1/2+1/4+...+1/2^k
比较一下可知,f(k+1)比f(k)多的项为从
1/(2^k+1),1/(2^k+2),到1/2^(k+1),共2^(k+1)-(2^k+1)+1=2*2^K -2^k=2^k
推荐
- 若不等式1/(n+1)+1/(n+2)+1/(n+3)+…+1/(3n+1)>a/12对一切正自然数n都成立,求自然数a的最大值,并用数学归纳法证明你的结论.
- 在数列{an}中,a1=1,an=2下标是n-1+(n+2)/n(n+1)
- 关于数学归纳法证明
- 已知数列{an}的各项都是正数,且满足:a0=1,a(n+1)=an(4-an)/2,n∈N.
- 在数列an中,a1=2,a(n+1)=λan+λ的(n+1)次方+(2-λ)2的n次方(n属于正整数,其中λ>0)
- When love beckons to you,follow him,though his ways are hard and steep.And when his wings enfold you,yield to him,though
- In order to study the s____in Russia ,Marx began to learn Russian in his sixties.
- 函数y=3|x|的递减区间是_.(用区间表示)
猜你喜欢