任一n维向量可以由n维向量组α1.α2.…αn线性表出.证明α1.α2.…α
人气:362 ℃ 时间:2020-01-30 04:37:53
解答
是证线性无关吧!
证明:由已知任一n维向量可以由n维向量组α1,α2,…,αn线性表出
所以n维基本向量组ε1,ε2,...,εn 可由α1,α2,…,αn线性表出.
而任一n维向量可由ε1,ε2,...,εn线性表示
所以向量组ε1,ε2,...,εn与α1,α2,…,αn等价.
所以 r(α1,α2,…,αn)=r(ε1,ε2,...,εn)=n.
所以 α1,α2,…,αn 线性无关.
推荐
- 证明α1,α2,…αn线性无关充分必要条件是任一n维向量都可以由它们线性表示
- 证明:在n维向量空间中,如果α1.α2...αn线性无关,则任一向量β可以由α1.α2...αn线性表示
- 为什么n+1个n维向量一定线性相关?
- n+1个n维向量必线性相关如何证明
- 线代:如果n个n维向量线性无关,则任一n维向量a可由上述向量组线性表出且表示法惟一,怎么证明?
- 1 APEC has a ___-layer organisational structure.
- -6倍根号7*三分之一倍根号21除以二倍根号3和(四倍根号6-三倍根号2)除以二倍根号2
- 已知等比数列1,X1,X2,···X2n,2,求X1×X2×···×X2n
猜你喜欢