x+3 |
x2−1 |
x2+6x+9 |
x2−2x+1 |
1 |
x+1 |
=
x+3 |
(x+1)(x−1) |
(x−1)2 |
(x+3)2 |
1 |
x+1 |
=
1 |
x+1 |
x−1 |
x+3 |
1 |
x+1 |
=
1 |
x+1 |
x−1 |
x+3 |
=
1 |
x+1 |
2(x+1) |
x+3 |
=
2 |
x+3 |
∵x2-1≠0,x+3≠0,x-1≠0,x+1≠0,
∴取x=2,
代入得:原式=
2 |
2+3 |
2 |
5 |
x+3 |
x2−1 |
x2+6x+9 |
x2−2x+1 |
1 |
x+1 |
x+3 |
x2−1 |
x2+6x+9 |
x2−2x+1 |
1 |
x+1 |
x+3 |
(x+1)(x−1) |
(x−1)2 |
(x+3)2 |
1 |
x+1 |
1 |
x+1 |
x−1 |
x+3 |
1 |
x+1 |
1 |
x+1 |
x−1 |
x+3 |
1 |
x+1 |
2(x+1) |
x+3 |
2 |
x+3 |
2 |
2+3 |
2 |
5 |