1 |
3 |
1 |
4 |
m |
72 |
而m是正整数,所以取m=42.
下面用数学归纳法证明:
1 |
n+1 |
1 |
n+2 |
1 |
2n |
41 |
72 |
(1)当n=2时,已证;
(2)假设当n=k时,不等式成立,即
1 |
k+1 |
1 |
k+2 |
1 |
2k |
41 |
72 |
则当n=k+1时,有
1 |
(k+1)+1 |
1 |
2k |
1 |
2k+1 |
1 |
2k+2 |
41 |
72 |
1 |
2k+1 |
1 |
2k+2 |
1 |
k+1 |
因为
1 |
2k+1 |
1 |
2k+2 |
1 |
k+1 |
所以
1 |
(k+1)+1 |
1 |
2k |
1 |
2k+1 |
1 |
2k+2 |
41 |
72 |
所以当n=k+1时不等式也成立.
由(1)(2)知,对一切正整数n,都有:
1 |
n+1 |
1 |
n+2 |
1 |
2n |
41 |
72 |
故选C.