(1)点(2,6)应该是(2,-6).
∵f(x)=x^3+x-16,∴f′(x)=3x^2+1,∴过点(2,-6)的切线斜率=3×2^2+1=13.
∴满足条件的切线方程是:y+6=13(x-2),即:13x-y-32=0.
(2)
令切点的坐标为(m,m^3+m-16).
∵f′(x)=3x^2+1,∴过点(m,m^3+m-16)的切线斜率=3m^2+1.
依题意,有:3m^2+1=4,∴m^2=1,∴m=1,或m=-1.
∴切点的坐标为(1,-14),或(-1,-18).
∴满足条件的切线方程是:y+14=4(x-1),或y+18=4(x+1),
即:4x-y-18=0,或4x-y-14=0.