如果A是n阶方阵,A = 单位矩阵;A^k = E(单位矩阵),求证A可以对角化
人气:135 ℃ 时间:2020-06-13 09:04:23
解答
因为 A^k = E 所以 A可逆,即A的特征根非零.
如果A不可对角化,根据亚当标准型,存在 两个非零向量 x1,x2,及一个非零特征根a,使得:
Ax2 = a x2,Ax1 = ax1 + x2.
则:
A^2x1 = A(ax1 + x2) = a^2 x1 + 2ax2
A^3x1 = A(a^2x1 + 2ax2) = a^3 x1 + 3a^2 x2
.
A^k x1 = A(a^(k-1)x1 + (k-1)a^(k-2)x2) = a^k x1 + ka^(k-1)x2
A^k = E ==> A^k x1 = x1,===> ka^(k-1) = 0,矛盾!
所以A可以对角化
推荐
- 设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
- 设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.
- 若A是n阶方阵,且AAT=E,|A|=-1,证明|A+E|=0.其中E为单位矩阵.
- 设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n
- 设A是n(n>=2)阶方阵且A的全部元素都是1,E是n阶单位矩阵,证明(E-A)^-1=E-1/(n+1)*A
- 如何用一个质量为m的钩码,一把刻度尺,一只铅笔和一些细绳来测量一根长1米左右粗细均匀的细木棒的质量
- 257,198,259,173,261,168,263,()
- 如图所示,一物块在恒定的水平拉力F的作用下,沿水平地面10s内匀速前进了5m,拉力做了50J的功.求: (1)物块的速度; (2)拉力做功的功率; (3)物块受到地面的摩擦力.
猜你喜欢