如何证明对于任意两个正整数m,n(m>n),m^2+n^2,m^2-n^2,2mn这三个数就是一组勾股数组
北师大版数学书8年级上册p11读一读勾股数组与费马大定理第二自然段
人气:387 ℃ 时间:2019-10-10 01:05:17
解答
a=m^2+n^2
b=m^2-n^2
c=2mn
b^+c^2=(m^2-n^2)^2+(2mn)^2
=m^4-2m^2*n^2+n^4+4m^2*n^2
=m^4+2m^2*n^2+n^4=(m^2+n^2)=a^2
即:b^2+c^2=a^2
所以,m^2+n^2,m^2-n^2,2mn这三个数就是一组勾股数组.
推荐
- 如果m、n是任意给定的正整数(m>n),证明m^2+n^2、2mn、m^2-n^2是勾股数
- 证明:任意给定正整数m,n,且m大于n,则m的平方-n的平方,2mn,m方+n方一定是勾股数.
- 如果m,n是任意给定的正整数(m〉n),证明:m的平方+n的平方,2mn,m的平方-n的平方是勾股数(又称毕达哥拉斯
- 如果m,n是任意给定的正整数(m>n),证明:m+n、2mn、m-n是勾股数
- 怎样证明一组勾股数组有一个数是3的倍数
- 五、 作文:话题作文.话题:成长的烦恼 1、写作指导 从小到大,生活中,学习中,一定有或多或少的烦
- 怎样解方程 6(x+1.8)=58.8
- (2i+3j+4k)*(2i-k)其中ijk为单位向量,*为叉积
猜你喜欢
- 连词成句:school,every,he,were,we,came,at,time(.)
- 谁能解答这道英语测试题(初一的)一定要准确!
- 李伟读一本书,第一天读子全书的2/15,第二天比第一天多读6页,这时已读的页数与剩下页数的比是3:7.李伟再读多少页能读完这本书?
- 仿照安塞腰鼓的排比句写一段话,描述一个你看过的表演场面.
- 四分之二加三分之一—-二分之5
- 有6枚1元硬币,正面朝上,每次翻动其中的4枚,翻动6次,能不能使所有的硬币的正面都朝下?
- 求函数y=sin^2(11π+x)-2sin(π/2-x)的最小值及相应的x值帮一下忙吧
- 求f(x,y)=(x^3)y的导数