> 数学 >
已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y=0平行,若f(x)在区间[t,t+1]上单调递减,则实数t的取值范围是______.
人气:119 ℃ 时间:2019-08-19 18:23:20
解答
由已知条件得f'(x)=3mx2+2nx,
由f'(-1)=-3,∴3m-2n=-3.
又f(-1)=2,∴-m+n=2,
∴m=1,n=3
∴f(x)=x3+3x2,∴f'(x)=3x2+6x.
令f'(x)<0,即x2+2x<0,
函数f(x)的单调减区间是(-2,0).
∵f(x)在区间[t,t+1]上单调递减,
则实数t的取值范围是[-2,-1]
故答案为[-2,-1].
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版