设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明:至少存在一点ξ∈(0,1),使得f′(ξ)+2f(ξ)=0.
人气:411 ℃ 时间:2020-01-27 23:12:48
解答
证明:令F(x)=e2xf(x),
则F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1).
由罗尔中值定理知,存在ξ∈(0,1),使得F′(ξ)=2e2ξf(ξ)+e2ξf′(ξ)=0,
即:f′(ξ)+2f(ξ)=0.
推荐
- 设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)=-2f(a)/a
- 设f(x)在[a,b]上连续可导,a>0 .证明:存在ξ,η∈(a,b),使得f'(ξ)=[(a+b)/2η]f‘(η)
- 设f(x)在[0,a]连续,在(0,a)可导,证明存在ξ∈(0,a)...
- 高数证明题:f(a)=0,f(b)=0,若在(a,b)内可导,f(x)+xf'(x)在(a,b)里有没有存在0点 并证明
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点ξ∈(0,1),使得2f(ξ)+ξf'(ξ)=0
- 计算1+3+5+7+9+11+13+15+17+19.
- 蜜蜂的巢是六边形(数学问题)
- 一个物体做匀速圆周运动,合外力做的功一定是0吗?
猜你喜欢