定义域在R上的函数满足f(x+y)+f(x-y)=2f(x)f(y) f(0)≠0 f(1/2)=0 求证f(x)为偶函数 f(x)为周期函数
定义域在R上的函数满足f(x+y)+f(x-y)=2f(x)f(y) f(0)≠0 f(1/2)=0 求证f(x)为偶函数f(x)为周期函数 若函数在[0,1]内单调 求f(1/3)=?f(1/6)=?
人气:224 ℃ 时间:2019-08-19 07:44:17
解答
1令x,y都等于零
可以得出f(0)=1
当x=0时
f(y)+f(-y)=2f(y)
即f(-y)=f(y)
所以f(x)为偶函数
2令y=1/2
则f(x+1/2)+f(x-1/2)=0
即f(x)=-f(x+1)
所以f(x-1/2)+f(x-3/2)=0
两式子相减
得出f(x+1/2)=f(x-3/2)
即f(x)=f(x+2)
f(x)是以2为周期的周期函数
3令x=1/3,y=1/6
f(1/2)+f(1/6)=2f(1/3)f(1/6)
即f(1/6)=2f(1/3)f(1/6)且f(1/6)不等于0
解得2f(1/3)=1/2
在令x=1/6,y=1/6
3/2=f(1/3)+f(0)=2f(1/6)f(1/6)
得f(1/6)=sqrt3/2
推荐
- 定义域在R上的函数满足f(x+y)+f(x-y)=2f(x)f(y) f(0)≠0 f(1/2)=0 求:f(x)为偶函数 周期函数 f(1/3) f(1/6
- 设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则f(32)=( ) A.1 B.23 C.12 D.32
- 定义域在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π.且当x∈[0,π/2]时,f(x)=sinx.
- 已知f(x)的定义域为R,对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.求证:y=f(x)为偶函数
- 已知函数f(x)其定义域为R,且在定义域内为偶函数,若f(1-x)=f(1+x),求证:y=f(x)为周期函数
- yesterday'football match made them feel (bored,boring)
- nether nor与either的意思和so that的意思与用法?用法句个例子和位置
- 若P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1、F2是左、右焦点,设角F1PF2=θ,求证S△F1PF2=(b^2)*tan(θ/2
猜你喜欢