设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),若f(3)=1,求不等式f(x)-f(x-2)>1的解集
人气:124 ℃ 时间:2019-10-09 06:30:32
解答
f(3)=1
则f(x)>f(x-2)+f(3)
f(xy)=f(x)+f(y),
所以f(x)>f[3(x-2)]
增函数
x>3(x-2)=3x-6
x
推荐
- 已知F(x)在其定义域R+上为增函数,f(2)=1,f(xy)=f(x)+f(y),解不等式f(x)+f(x-2)
- 已知f(x)在其定义域(0,+∞)上为增函数,f(2)=1,若f(xy)=f(x)+f(y),解不等式f(x)+f(x-2)≤3.
- f(x)是定义在R上的单调增函数,且满足f(xy)=f(x)+f(y).求若f(2)=1,解不等式f(x+3)》1
- f(x)是定义在R上的单调增函数,且满足f(xy)=f(x)+f(y).1.求f(1)的值 2.若f(2)=1,解不等式f(x+3)>1
- 设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,求解不等式f(x)+f(x-2)>1.
- 美丽的秋天作文,300字的
- 早期的蝌蚪很像鱼,从外形上看像鱼的特点是
- 把2007465000,四舍五入到万位记作 万,省略亿后面的尾数是 亿
猜你喜欢