设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,求解不等式f(x)+f(x-2)>1.
人气:199 ℃ 时间:2019-09-19 07:24:54
解答
由条件可得f(x)+f(x-2)=f[x(x-2)],1=f(3).
所以f[x(x-2)]>f(3),又f(x)是定义在R上的增函数,所以有x(x-2)>3,可解得x>3或x<-1.
所求不等式的解集为{x|x>3或x<-1}.
推荐
- 设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),若f(3)=1,求不等式f(x)-f(x-2)>1的解集
- 已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1. (1)求f(4)与f(8)的值; (2)解不等式f(x)-f(x-2)>3.
- f(x)是定义在R上的单调增函数,且满足f(xy)=f(x)+f(y).求若f(2)=1,解不等式f(x+3)》1
- 已知f(x)在其定义域(0,+∞)上为增函数,f(2)=1,若f(xy)=f(x)+f(y),解不等式f(x)+f(x-2)≤3.
- 已知F(x)在其定义域R+上为增函数,f(2)=1,f(xy)=f(x)+f(y),解不等式f(x)+f(x-2)
- 某礼堂共有25排座位,第一排20个座位,后面每一排比前一排多一个座位,请写出第n排的座位数. ①当
- 一元二次方程公共根
- 有没有第三个字是花的四字成语
猜你喜欢