设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,求解不等式f(x)+f(x-2)>1.
人气:140 ℃ 时间:2019-09-19 07:24:54
解答
由条件可得f(x)+f(x-2)=f[x(x-2)],1=f(3).
所以f[x(x-2)]>f(3),又f(x)是定义在R上的增函数,所以有x(x-2)>3,可解得x>3或x<-1.
所求不等式的解集为{x|x>3或x<-1}.
推荐
- 设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),若f(3)=1,求不等式f(x)-f(x-2)>1的解集
- 已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1. (1)求f(4)与f(8)的值; (2)解不等式f(x)-f(x-2)>3.
- f(x)是定义在R上的单调增函数,且满足f(xy)=f(x)+f(y).求若f(2)=1,解不等式f(x+3)》1
- 已知f(x)在其定义域(0,+∞)上为增函数,f(2)=1,若f(xy)=f(x)+f(y),解不等式f(x)+f(x-2)≤3.
- 已知F(x)在其定义域R+上为增函数,f(2)=1,f(xy)=f(x)+f(y),解不等式f(x)+f(x-2)
- 挑战 600字作文
- 1.吹笛子时,手指按住不同的孔便会发出不同的声音,阐述的是哪个物理现象?
- 吐鲁番的葡萄,哈密的瓜是哪个民族的?大草原的羊群和戈壁滩的骆驼代表那个民族?
猜你喜欢