已知函数y=x3+3ax2+3bx+c在x=2处有极值,且其图象在x=1处的切线与直线6x+2y+5=0平行.
(1)求函数的单调区间;
(2)求函数的极大值与极小值的差.
人气:477 ℃ 时间:2019-08-18 11:25:27
解答
(1)∵函数y=x3+3ax2+3bx+c,∴y'=3x2+6ax+3b,∵函数y=x3+3ax2+3bx+c在x=2处有极值,∴当x=2时,y′=0,即12+12a+3b=0,①∵函数图象在x=1处的切线与直线6x+2y+5=0平行,∴k=y′|x=1=3+6a+3b=-3,②联立①②,解得...
推荐
猜你喜欢