f(x)在[a,b]上连续,在(a,b)内可导,且f(b)=f(a)=1,证明:存在ε,η∈(a,b),使e^(η-ε)(f(η)+f'(η)=1
人气:436 ℃ 时间:2020-03-24 14:15:06
解答
设g(x)=f(x)e^x
利用中值定理,存在η∈(a,b),使得
g'(η) = g(b)-g(a))/(b-a)
即:
e^η(f(η)+f'(η))=(e^b - e^a)/(b-a)
又,对h(x)=e^x 用中值定理,得:
存在ε∈(a,b),使得
e^ε = h'(ε) = h(b)-h(a))/(b-a)=(e^b - e^a)/(b-a)
==>e^η(f(η)+f'(η))= e^ε
即:e^(η-ε)(f(η)+f'(η)=1
推荐
- 设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ∈(0,1)使得f(ξ)+f‘'(ξ)=e^ξ[f(1)e-f(0)]
- 设f(x)在【0,a】上连续,在(0,a)内可导,且f(a)=0,证明存在一点 X属于(0,a),使f(x)+x*f`(x)=0
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=1/e证明;存在a属于(0,1),使得f'(a)=-e^(-a)
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f(η)+f′(η)]=1.
- 设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]
- 关于以下三个英语短语的区别的问题
- 如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D、E两点(D、E不与B、A重合). (1)
- lim(x→0)[ cosx-1 /(sin² x)] 等于多少?
猜你喜欢