证明:当x>0时,有arcsinx+arccosx=π/2
人气:268 ℃ 时间:2019-08-20 21:33:53
解答
证明:设A=arcsinx∈(0,π/2)
sinA=x,cosA=√(1-x²)
设B=arccosx∈(0,π/2)
cosB=x,sinB=√(1-x²)
A+B ∈(0,π)
sin(A+B)=sinAcosB+cosAsinB=x²+(1-x²)=1
所以 A+B=π/2
即:arcsinx+arccosx=π/2
推荐
猜你喜欢
- 关于一篇英语小作文
- 一辆汽车在平直的公路上向东快速行驶,一个人在该公路的便道上向东散步,如果以汽车作为参照物,则人
- 水何澹澹,——树木从生,——.——洪波涌起.
- 已知tana=2,求2/3sin^2a+1/4cos^2a
- 关于英语组句结构.
- 李清照为什么如此怀念项羽
- 求一道数学题解析:2,4,7,11,16,22.求第N个数
- 若关于x的不等式(a平方-1)x平方+(a+1)x+1大于0恒成立.求a取值范围