tanA |
tanB |
2c |
b |
sinAcosB |
cosAsinB |
2c |
b |
由正弦定理可得,1+
sinAcosB |
cosAsinB |
2sinC |
sinB |
sinAcosB+sinBcosA |
sinBcosA |
2sinC |
sinB |
∴sin(A+B)=2sinCcosA,cosA=
1 |
2 |
∵0<A<π∴A=
π |
3 |
故答案为:
π |
3 |
tanA |
tanB |
2c |
b |
tanA |
tanB |
2c |
b |
sinAcosB |
cosAsinB |
2c |
b |
sinAcosB |
cosAsinB |
2sinC |
sinB |
sinAcosB+sinBcosA |
sinBcosA |
2sinC |
sinB |
1 |
2 |
π |
3 |
π |
3 |