平面上四个点O,A,B,C满足AB²+OC²=AC²+OB²,求证OA向量=BC向量
人气:175 ℃ 时间:2020-02-05 09:05:52
解答
我得出结果不是相等,而是相互垂直关系.
以O为原点建立直角坐标系,
O(0,0),
设向量OA=(x1,y1),OB=(x2,y2),OC(x3,y3),
向量AB=(x2-x1,y2-y2),向量AC=(x3-x1,y3-y1),向量BC=(x3-x2,y3-y2)
AB^2+OC^2=(x2-x1)^2+(y2-y1)^2+x3^2+y3^2,
AC^2+OB^2=(x3-x1)^2+(y3-y1)^2+x2^2+y2^2,
(x2-x1)^2+(y2-y1)^2+x3^2+y3^2=(x3-x1)^2+(y3-y1)^2+x2^2+y2^2,
-2x1x2-2y1y2=-2x1x3-2y1y3,
x1x2+y1y2=x1x3+y1y3,
x1x3-x1x2+y1y3-y1y2=0
OA·BC=x1x3-x1x2+y1y3-y1y2=0,
故向量OA⊥BC.
不是相等关系.
推荐
- 设O,A,B,C为平面上四个点,向量OA=向量a,向量OB=向量b,向量OC=向量c,且向量a+向量b+向量c=零向量,向量a与向量b的数量积=向量b与向量c的数量积=向量c与向量a的数量积=-1,则|向量a|+|向量b|+|向量c|等于
- 设点O,A,B,C为同一平面内的四点,向量OA=a,向量OB=b,向量OC=c,且a+b+c=0,a·b=b·c=c·a=-1,三角形ABC形
- 在同一平面上有三角形ABC及一点O满足关系式:(向量)OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,则O是什么心
- 已知o是三角形abc所在平面内一点,d为bc中点,且2向量oa+向量ob+向量oc=o,
- 点O是△ABC所在平面上一点,且满足向量OA×向量OB=向量OB×向量OC=向量OC×向量OA.则点O是△ABC的
- 有关春秋战国诸侯争霸的成语
- 铝合金硬质阳极氧化
- 汉译英:只有一句话,关于地理自然环境方面的,
猜你喜欢